

Hydrogen remains a solution desperately in search of a problem.
If your aim is to generate locally, why not just use batteries? They’re cheaper, more efficient, and more reliable. Why have the lossy and very high maintenance electrolysis and hydrogen storage/transfer process involved?
Yes, significantly so. Hydrogen fuel cells have a much shorter lifespan and higher manufacturing/replacement cost than lithium ion batteries. The compressed gas tanks are also very expensive and have a limited lifespan (albeit a relatively long one, compared to the fuel cells).
Market rate hydrogen is currently about as cheap as it’s possible to get, because it is almost exclusively from fossil fuel sources which are gradually winding down.
Locally produced electrolysis hydrogen suffers from very low efficiency rates; about 2/3rds of the power used to produce the hydrogen is lost in the process. Assuming you don’t have an enormous overabundance of power being generated, it’s more efficient to store the power locally in batteries (which don’t have to be lithium ion if it’s for static storage; other chemistries become competitive if they don’t need to move around) than it is to store it as hydrogen. And if you’re generating a huge overabundance of power such that throwing 2/3rds of it away seems sensible, in most cases the question would be why you don’t make a grid connection and feed in anyway (extreme remote locations notwithstanding).